New tracers identify hydraulic fracturing fluids and accidental releases from oil and gas operations.

نویسندگان

  • N R Warner
  • T H Darrah
  • R B Jackson
  • R Millot
  • W Kloppmann
  • A Vengosh
چکیده

Identifying the geochemical fingerprints of fluids that return to the surface after high volume hydraulic fracturing of unconventional oil and gas reservoirs has important applications for assessing hydrocarbon resource recovery, environmental impacts, and wastewater treatment and disposal. Here, we report for the first time, novel diagnostic elemental and isotopic signatures (B/Cl, Li/Cl, δ11B, and δ7Li) useful for characterizing hydraulic fracturing flowback fluids (HFFF) and distinguishing sources of HFFF in the environment. Data from 39 HFFFs and produced water samples show that B/Cl (>0.001), Li/Cl (>0.002), δ11B (25-31‰) and δ7Li (6-10‰) compositions of HFFF from the Marcellus and Fayetteville black shale formations were distinct in most cases from produced waters sampled from conventional oil and gas wells. We posit that boron isotope geochemistry can be used to quantify small fractions (∼0.1%) of HFFF in contaminated fresh water and likely be applied universally to trace HFFF in other basins. The novel environmental application of this diagnostic isotopic tool is validated by examining the composition of effluent discharge from an oil and gas brine treatment facility in Pennsylvania and an accidental spill site in West Virginia. We hypothesize that the boron and lithium are mobilized from exchangeable sites on clay minerals in the shale formations during the hydraulic fracturing process, resulting in the relative enrichment of boron and lithium in HFFF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iodide, bromide, and ammonium in hydraulic fracturing and oil and gas wastewaters: environmental implications.

The expansion of unconventional shale gas and hydraulic fracturing has increased the volume of the oil and gas wastewater (OGW) generated in the U.S. Here we demonstrate that OGW from Marcellus and Fayetteville hydraulic fracturing flowback fluids and Appalachian conventional produced waters is characterized by high chloride, bromide, iodide (up to 56 mg/L), and ammonium (up to 420 mg/L). Br/Cl...

متن کامل

Recent Advances in Hydraulic Fracturing for Enhanced Well Productivity: State of the Art Report

 Hydraulic fracturing of horizontal wells is considered as the main reason for the phenomenal increase in production of oil and gas from marginal and unconventional reservoirs in North America. The process evolution started more than a decade ago and has resulted in ultra-low permeability reservoirs producing at close to the same rates as some of the very prolific reservoirs in the Middle East,...

متن کامل

What lessons can hydraulic fracturing teach CCS about social acceptance?

As with many technologies, carbon capture and storage (CCS) faces social acceptance challenges that can impact the pace of its development and deployment. Previous studies on the social acceptance of CCS have tended to rely on case studies of pilot projects or surveys of decision makers and the general public. Here, we take a different approach, using real world data about the social acceptance...

متن کامل

The effects of shale gas exploration and hydraulic fracturing on the quality of water resources in the United States

Advances in drilling technologies and production strategies such as horizontal drilling and hydraulic fracturing have significantly improved the production of natural gas by stimulating fluid flow from wells. Since 2008, these technological developments have spurred exponential growth of gas well drilling across the U.S. While the new drilling for shale gas and hydraulic fracturing technologies...

متن کامل

Numerical Simulation of Hydraulic Frac-turing Process for an Iranian Gas Field in the Persian Gulf

Most of the Iranian oil and gas wells in the Persian Gulf region are producing through their natural productivity and, in the near future, the use of stimulation methods will be undoubtedly necessary. Hydraulic fracturing as a popular technique can be a stimulation candidate. Due to the absence of adequate research in this field, numerical simulation can be an appropriate method to investigate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 48 21  شماره 

صفحات  -

تاریخ انتشار 2014